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ABSTRACT 

The ability to predict the intentions of people based solely on their visual actions is a skill only performed 

by humans and animals.  The intelligence of current computer algorithms has not reached this level of 

complexity, but there are several research efforts that are working towards it.  With the number of 

classification algorithms available, it is hard to determine which algorithm works best for a particular 

situation.  In classification of visual human intent data, Hidden Markov Models (HMM), and their 

variants, are leading candidates. 

The inability of HMMs to provide a probability in the observation to observation linkages is a big 

downfall in this classification technique.  If a person is visually identifying an action of another person, 

they monitor patterns in the observations.  By estimating the next observation, people have the ability to 

summarize the actions, and thus determine, with pretty good accuracy, the intention of the person 

performing the action.  These visual cues and linkages are important in creating intelligent algorithms 

for determining human actions based on visual observations. 

The Evidence Feed Forward Hidden Markov Model is a newly developed algorithm which provides 

observation to observation linkages.  The following research addresses the theory behind Evidence Feed 

Forward HMMs, provides mathematical proofs of their learning of these parameters to optimize the 

likelihood of observations with a Evidence Feed Forwards HMM, which is important in all 

computational intelligence algorithm, and gives comparative examples with standard HMMs in 

classification of both visual action data and measurement data; thus providing a strong base for 

Evidence Feed Forward HMMs in classification of many types of problems. 
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1. INTRODUCTION 

Visual Understanding (VU) is the ability for a machine to understand events, items, and 

scenarios through visual cues, or visual data.  It is a very important and complex process used 

in many artificial and computational intelligence research programs.  The need for VU is 

increasing with the growing advances in technology that require  VU algorithms to be taken out 

of the research labs and into fully developed programs [11, 12, 13, 32, 83].   
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A sub research area of VU is Visual Human Intent Analysis (VHIA).  This area may also be 

referred to as visual human behavior identification, action or activity recognition, and 

understanding human actions from visual cues.  VHIA concentrates on the visual identification 

of actions made by a human.  There are many different names associated with VHIA that 

describe the specific process.  In static self security systems visual human behavior 

identification systems will aide or replace security guards monitoring CCTV feeds [13].  

Television stations and the gaming community will require activity recognition systems to 

automatically categorize and store or quickly search for certain scenes in a database [12].  The 

military is pushing robotics to replace the soldier, thus requiring the need to understand human 

actions from visual cues to determine hostile actions from people so the robot can take 

appropriate actions to secure itself [83].  These are just a few names of the many names for 

VHIA.   
 

Evidence Feed Forward Hidden Markov Models are designed to better handle many of the 

shortcomings not addressed in current classification systems.  The motivation of this new 

research is to provide a way of better detecting human movements for classification of the 

person’s activity.  This classification will be based on the observations being linked, not just 

linking observations with events as described in standard Hidden Markov Models.  Moving 

from better classifications in visual human activity to other types of non-visual data will be 

discussed.  Classification results of Evidence Feed Forward Hidden Markov Models compared 

with results of standard Hidden Markov Models will also be shown for both visual and non-

visual data.  The goal of this research is to develop a more robust classification system then 

current standard Hidden Markov Models and to identify a new way of looking at the links 

between evidences from the classification system; in the case of Evidence Feed Forward 

HMMs this is described as observation to observation links.   
 

The first section of this paper is the introduction.  The second section is a brief overview of 

current research in the area of VHIA.  The third section describes the Evidence Feed Forward 

theory and derives the equations for the three common problems of HMMs.  The fourth and 

fifth sections use the Evidence Feed Forward HMM developed algorithms and apply them to 

two examples, one measurement based and one visual based.  The final section is the 

conclusion. 

2. CURRENT RESEARCH IN THE AREA OF VISUAL HUMAN INTENT 

ANALYSIS 

The current research in the area of VHIA is split into six sub-sections which best describes the 

methods based on the volume of work: Non-traditional artificial intelligent (AI) methods, 

traditional AI methods, Markov models and Bayesian networks, grammars, traditional hidden 

Markov models (HMM), and non-traditional HMMs. 
 

Non-traditional AI methods general do not have learning in them and rely on heavy processing 

of the data to determine the intent of the person.  M. Cristani et al [1] uses non-traditional AI 

methods by taking in both audio and visual data to determine simple events in an office.  First 

they remove foreground objects and segment the images in the sequence.  This output is 

coupled with the audio data and a threshold detection process is used to identify unusual events.  

These event sequences are put into an audio visual concurrence matrix (AVC) to compare with 

known AVC events.   
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Template matching is performed by M. Dimitrijevic et. al. [2].  They developed a template 

database of actions based on five male and three female people.  Each human action is 

represented by three frames of their 2D silhouette at different stages of the activity: the frame 

when the person first touches the ground with one of his/her feet, the frame at the midstride of 

the step, and the end frame when the person finishes touching the ground with the same foot.  

The three frame sets were taken from seven camera positions.  When determining the event, 

they use a modified Chamfer’s distance calculation to match to the template sequences in the 

database. 
 

Traditional AI methods usually have some type of learning, either with known or unknown 

outcomes.  Typical methods would include neural networks, fuzzy systems, and other common 

AI techniques.  H. Stern et al. [3] created a prototype fuzzy system for picture understanding of 

surveillance cameras.  His model is split into three parts, pre-processing module, a static object 

fuzzy system module, and a dynamic temporal fuzzy system module.  The static fuzzy system 

module classifies pre-processed data as a single person, two people, three people, many people, 

or no people.  The dynamic fuzzy system determines the intent of the person based on the 

temporal movements. 
 

Grammars are often used to describe the sequence of events, usually through a type of words or 

characters.  These words are developed by extrapolating the action to common words, which 

grouped together may make a sentence describing the action (in a non-literal sense).  A. Ogale 

et. al. [4] uses probabilistic context free grammars (PCFG) in short action sequences of a person 

from video.  Body poses are stored as silhouettes which are used in the construction of the 

PCFG.  Pairs of frames are constructed based on their time slot: the pose from frame 1 and 2 are 

paired, the pose from frame 2 and 3 are paired, and so on.  These pairs construct the PCFG for 

the given action.  When testing the algorithm, the same procedure is followed.  Comparing the 

testing data with the trained data is accomplished through Bayes: P(sk|pi) = P(pi|sk)P(sk)/P(pi), 

where sk is the k
th
 silhouette and pi is the i

th
 pose. 

 

There are a number of traditional and non-traditional Hidden Markov Models (HMM) that are 

used in trying to understand peoples actions based on visual sequences.  Traditional HMMs are 

used to classify items that have a flow to them.  This flow, generally related to time, determines 

the specific body pose of the action sequence and the HMM determines how likely the flow is.  

For non-traditional HMMs, they are just an offshoot to the standard HMM except they add 

another facet which provides better results based on the type of data coming in, generally used 

in specific examples.  A few include Yamato et. al. [5] used HMMs to recognize six tennis 

strokes with a 25x25 mess feature matrix to describe body positions in each frame.  Wilson and 

Bobick [6] use a Parametric Hidden Markov Model (PHMM) to recognize hand gesture.  Oliver 

et. al. [7] developed a method to detect and classify interactions between people using a 

Coupled Hidden Markov Model (CHMM) based on simulations.  Multi-Observation Hidden 

Markov Models (MOHMM) are discussed in both [8] and [9] from Xaing and Gong for 

recognizing break points in video content for separation of activities and detect piggybacking of 

peoples going through a security door, respectively. 

3. Evidence Feed Forward Hidden Markov Models 

3.1 Evidence Feed Forward Hidden Markov Model Introduction 

The Evidence Feed Forward Hidden Markov Model is more than an extension or a variance of 

Hidden Markov Models (HMM), like Parametric HMMs or Hierarchical HMMs, because it 
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links the current observations to the next observation in the sequence, assigns a probability 

associated with this, and has the ability to better describe visual actions.

Forward HMM gives the impression of disregarding

HMM theory, by providing the link between observations

which in the strict sense, Markov models current stat
 

The assumption of breaking causality 

reason for making the model is to 

causality rule, at least how we look at causality in modeling with HMMs

note that in many cases, previous events will affect fu

weather example found in many textbooks:

and would like to know whether it is raining or not outside.  The only evidence he has is 

observation of his boss coming inside with or without

make his decision.  Figure 1 shows the hidden l

No Rain (NR).  The observation

(NU). This example shows that the evidence (observation) is only dependent on the hidden 

layer and not vice versa.  Also, the hidden layer is only dependent on the previous 

weather (with some probability).  

probability of the current observation’s effect on the next observation. Obviously, i

example, current observation of an umbrella (or no observation of an umbrella) does not affect 

tomorrow’s observation of an umbrella (or no umbrella).  However, if you look at the 

observation as another event carried out by the boss, then you can see

probability in the HMM that has been overlooked when modeling this example.  These two 

events can be tied together in this model; the event of the boss choosing an umbrella and the 

event of the person seeing the umbrella.  Independe

Causality of the observation is looked at differently than in a standard HMM model.  The 

underlying reason the observations have an effect on the next observation is based on the event 

by the boss and not looked at as just an observation.  Thus, causality is still adhered to.  

Specifically, if, for example, the boss comes into the building without an umbrella and it is 

raining then one can probably assume that the boss may be more likely to carry an umbrella t

next day since he did not like getting wet.  The same may be true if he did carry an umbrella.  

This connects the evidence of each event to the evidence of the next nodes event as shown in 

Figure 2. 

 

Figure 1:  Weather example using HMMs.  The nodes 

Rain (R) and No Rain (NR).  The nodes 
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observations to the next observation in the sequence, assigns a probability 

associated with this, and has the ability to better describe visual actions.   The Evidence Feed 

HMM gives the impression of disregarding the rules of causality, as suggested by 

by providing the link between observations that is not through the hidden nodes, 

Markov models current state only depends on the previous states

causality is relatively true in standard HMMs, but if you look at t

is to “model the event” not create real world, then we can relax the 

east how we look at causality in modeling with HMMs.  It is also important to 

previous events will affect future events.  Take, for example a 

found in many textbooks:  A person is locked inside a windowless building 

and would like to know whether it is raining or not outside.  The only evidence he has is 

inside with or without an umbrella.  He constructs an

gure 1 shows the hidden layer is represented by the nodes, Rain (R) and 

observation is represented by the nodes, Umbrella (U) and No Umbrella 

This example shows that the evidence (observation) is only dependent on the hidden 

and not vice versa.  Also, the hidden layer is only dependent on the previous 

weather (with some probability).  HMMs and their variants do not take into account the 

probability of the current observation’s effect on the next observation. Obviously, i

example, current observation of an umbrella (or no observation of an umbrella) does not affect 

tomorrow’s observation of an umbrella (or no umbrella).  However, if you look at the 

observation as another event carried out by the boss, then you can see that there may be some 

probability in the HMM that has been overlooked when modeling this example.  These two 

events can be tied together in this model; the event of the boss choosing an umbrella and the 

event of the person seeing the umbrella.  Independence with respect to the model is still intact.  

Causality of the observation is looked at differently than in a standard HMM model.  The 

underlying reason the observations have an effect on the next observation is based on the event 

ked at as just an observation.  Thus, causality is still adhered to.  

Specifically, if, for example, the boss comes into the building without an umbrella and it is 

raining then one can probably assume that the boss may be more likely to carry an umbrella t

next day since he did not like getting wet.  The same may be true if he did carry an umbrella.  

This connects the evidence of each event to the evidence of the next nodes event as shown in 

Weather example using HMMs.  The nodes in the hidden layer are represent

Rain (R) and No Rain (NR).  The nodes in the observation layer are represented by U and NU
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observations to the next observation in the sequence, assigns a probability 

The Evidence Feed 

as suggested by 

that is not through the hidden nodes, 

e only depends on the previous states.   

, but if you look at the 

not create real world, then we can relax the 

It is also important to 

ture events.  Take, for example a common 

A person is locked inside a windowless building 

and would like to know whether it is raining or not outside.  The only evidence he has is the 

an umbrella.  He constructs an HMM to 

Rain (R) and 

No Umbrella 

This example shows that the evidence (observation) is only dependent on the hidden 

and not vice versa.  Also, the hidden layer is only dependent on the previous day’s 

into account the 

probability of the current observation’s effect on the next observation. Obviously, in our 

example, current observation of an umbrella (or no observation of an umbrella) does not affect 

tomorrow’s observation of an umbrella (or no umbrella).  However, if you look at the 

that there may be some 

probability in the HMM that has been overlooked when modeling this example.  These two 

events can be tied together in this model; the event of the boss choosing an umbrella and the 

nce with respect to the model is still intact.  

Causality of the observation is looked at differently than in a standard HMM model.  The 

underlying reason the observations have an effect on the next observation is based on the event 

ked at as just an observation.  Thus, causality is still adhered to.  

Specifically, if, for example, the boss comes into the building without an umbrella and it is 

raining then one can probably assume that the boss may be more likely to carry an umbrella the 

next day since he did not like getting wet.  The same may be true if he did carry an umbrella.  

This connects the evidence of each event to the evidence of the next nodes event as shown in 

 
represented by 

ed by U and NU. 
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Figure 2:  Weather example using Evidence Feed

evidence (marked U and NU) and the oth

occurring based on the previous evidence.

 

In this example, Figure 2 shows that the edges connecting observations to observations are 

represented as bi-directional edges which may suggest that the probability is the same in either 

direction.  This is not the case.  In fact, it 

complexity so that the probabilities of the edges connecting the evidence rely only on the 

evidence and the current hidden state and not on the future hidden state.  The bi

edges are illustrated as such due to simplification of the drawing. 

assume that the boss forgets his umbrella while it is raining outside.  One can assume that the 

probability associated with the boss carrying his umbrella the next day should be

he did not like the feeling of getting

wet, thus puts more emphasis on carrying an umbrella whether it is raining 

can be assumed that the probability represented in the 

the same probability as the edge

addition to the probabilities based on the person (or thing) which th

directly related to.  

  

3.2 Evidence Feed Forward Hidden Markov 
 

Before jumping into deriving equations

total number of hidden nodes and M be the total number of observations.  Let T be the total 

number of transitions (or time).  Let 

state at time t is Si where 1 ≤ i ≤

means the observation at time t is V
 

The probability of transitioning from on

the current state and j is the next state, 1 

the aij’s.  The rows represent the current state (i) and the columns represent the next state (j).

there are three hidden nodes in the Evidence Feed 
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Weather example using Evidence Feed-Forward HMMs.  Linkages between the 

) and the other evidences represent the probability of the evidence 

occurring based on the previous evidence. 

2 shows that the edges connecting observations to observations are 

directional edges which may suggest that the probability is the same in either 

direction.  This is not the case.  In fact, it can be shown that the problem can be reduced 

complexity so that the probabilities of the edges connecting the evidence rely only on the 

evidence and the current hidden state and not on the future hidden state.  The bi

edges are illustrated as such due to simplification of the drawing.  In this weather example, 

assume that the boss forgets his umbrella while it is raining outside.  One can assume that the 

with the boss carrying his umbrella the next day should be greater since 

he did not like the feeling of getting wet.  He probably wants to reduce his chance of getting 

wet, thus puts more emphasis on carrying an umbrella whether it is raining outside 

probability represented in the edge from U given R to U given NR 

edge going to U given R.  In a sense, one can think of this as an 

addition to the probabilities based on the person (or thing) which the outcome (observation) is 

Forward Hidden Markov model derivation 

Before jumping into deriving equations, the variables should formally be defined.  Let N be the 

total number of hidden nodes and M be the total number of observations.  Let T be the total 

number of transitions (or time).  Let Qt be the current state at time t, 1≤ t ≤ T; Qt = S

≤ N.  The observations at time t are represented by O

means the observation at time t is Vh where 1 ≤ h ≤ M. 

The probability of transitioning from one hidden state to another is captured by aij

state and j is the next state, 1 ≤  i,j ≤ N.  Let A be an NxN matrix which captures all 

’s.  The rows represent the current state (i) and the columns represent the next state (j).

dden nodes in the Evidence Feed Forward HMM, N=3, then A would be:

� � ��11 �12 �13�21 �22 �32�31 �32 �33	 
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Linkages between the 

er evidences represent the probability of the evidence 

2 shows that the edges connecting observations to observations are 

directional edges which may suggest that the probability is the same in either 

be shown that the problem can be reduced in 

complexity so that the probabilities of the edges connecting the evidence rely only on the 

evidence and the current hidden state and not on the future hidden state.  The bi-directional 

In this weather example, 

assume that the boss forgets his umbrella while it is raining outside.  One can assume that the 

greater since 

wants to reduce his chance of getting 

outside or not.  It 

from U given R to U given NR has 

one can think of this as an 

outcome (observation) is 

Let N be the 

total number of hidden nodes and M be the total number of observations.  Let T be the total 

= Si means the 

represented by Ot.  Ot = Vh 

, where i is 

Let A be an NxN matrix which captures all 

’s.  The rows represent the current state (i) and the columns represent the next state (j).  If 

then A would be: 
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Let bjh be the probability of observing Vh while in state Sj.  Let B be an NxM matrix which 

holds the observation probabilities.  If there were three hidden layers and two observations, 

N=3 and M=2, then B would be 


 � ��11 �12�21 �22�31 �32	 
Let ci(h,k) be the probability of being in state Si and currently observing Vh with the next 

observation being Vk for 1 ≤ h,k ≤ M.  Let C be the MxMxN matrix represented as shown 

below 

� � ���1,1� ��1,2���2,1� ��2,2��, �� � ����1,1� ���1,2����2,1� ���2,2��, and �� � ����1,1� ���1,2����2,1� ���2,2��. 
Let the probabilities of starting in state Si be represented as πi.  π is a 1xN vector which holds all 

the πi values.  � �  �� �� ��� for a three hidden node Evidence Feed-Forward HMM. 
 

Similar to the standard HMM, the Evidence Feed Forward HMM is represented by λ but with 

an added parameter.  λ has the parameters A, B, C, and π and can be written as λ=(π, A, B, C).  

Either λ or (π, A, B, C) can represent the Evidence Feed Forward HMM.  Given the model λ at 

time t in the current state Si observing Vh, what is the probability of being in state Sj observing 

Vk?  The calculation of transitioning from state Si to state Sj is aij, observing Vh from state Sj is 

bjh, and being in state Si observing Vh with next observation being Vk is ci(h,k).  This 

probability is aij·bjh·ci(h,k).  When possible, to increase the readability, Si for all i will be 

represented as just i.  Also, Vh for all h will be represented by just h. 

There are three typical problems that all HMMs should solve: 

1. What is the probability of the observation sequence O = (O1,O2,…,OT) given the model 

λ?   This is asking to find P(O|λ). 

2. What is the most optimal hidden state path given the observations O and the model λ?  

This is asking to solve P(Q|O,λ) where Q = (Q1,Q2,…,QT). 

3. Given a number of observations, what is the optimal parameters of λ which maximizes 

P(O|λ)?  This is the learning problem. 

For a detailed tutorial on how standard HMMs solve these problems the reader is referred to 

Rabiner [13].   
 

To solve the first problem, “What is the probability of the observation sequence O = 

(O1,O2,…,OT) given the model λ?”, a forward algorithm procedure is developed to compute 

αi(t) = p(O1,O2,…Ot,Qt = i|λ).  When t = T, P(O|λ) is found by summing all the αi’s at time T.  

The forward algorithm procedure is: 

1. αi(1) = πibi(O1) for all i, 0 ≤ i, t ≤ T, and bi(O1) = bih for some h which O1 = Vh.  Notice 

that there is no c term because this is the initial starting state calculation for αi so there 

is no observation to observation in the calculation of the initial probabilities. 

2. αj(t+1) = �∑ ����� ����� ���!" , !"#�$� �!"#�, where ci(Ot,Ot+1) is ci(h,k) for Ot = Vh 

and Ot+1 = Vk and N is the total number of hidden states. 

3. P(O|λ) = ∑ ���%���� . 

From the final part of step 2 where αi(T) =  P(O1,O2,…,OT,QT = i|λ), we find the probability of 

the observation sequence and the final state QT = i given the model.  By summing up all the αi’s 

we get the final probability of P(O|λ) shown in step three. 
 

A backwards algorithm procedure can also be developed to find P(O|λ).  In the backwards 

algorithm, the starting state is at time T and the algorithm is worked backwards towards time t.  

The variable βi is defined as βi(t) = P(Ot+1,Ot+2,…,OT | Qt = i, λ). 
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1. βi(T) = 1 

2. βi(t) = �∑ �� � �!"#�� � & �� ' 1�$���!" , !"#� 
3. P(O|λ) = ∑ &��1���� �����!�. 

It should be noted that the probability of the observations given the model using both the 

forward and backwards algorithms are used later to help find answers to the remaining two 

Evidence Feed-Forward HMM problems. 
 

The second common HMM problem which the Evidence Feed-Forward HMM should solve is 

computing the optimal path of hidden states from the observations given the model.  Optimal 

path could mean many different things.  One way to look at optimal paths is to find the 

maximum probability moving from one state/observation to another, considering only the path 

which is maximum for only the current transition.  This has the possibility of transitioning to a 

state which leaving from is impossible.   
 

In this research, finding the optimal path is considered the same as finding the maximum 

probability for the entire series and not individual maximums. Optimal path is assumed that one 

is looking for the path that gives the maximum probability of the state sequence given the 

observations and the model; maximizing P(Q|O,λ). This solution requires the use of both the 

forward and backwards algorithms.  To do this two new variables must be created, δ and Path.  

δ is defined as the running probability of paths at time t.  Path is the current path found from 

computing δ. 

1. δ1(i) = πibi(O1).  Path = []. 

2. δt(j) = max+�+,�-".�� � �!"����!"., !"�$.  Path is the state which this is maximized.  

Add the state to the Path. 

3. Final step is finding the state which maximizes δT(i) for 1 ≤ i ≤ n. 

The first step of calculating the δ value is to assign each δ value the probability of starting in 

each of the states.  The recursion step continues to keeps the maximum value throughout the 

model.  The final step finds the final hidden node which is the maximum of all the δi’s at time 

T. 
 

The third and final problem that HMMs should be able to solve is the learning problem.  To 

learn, assume you have a number of observations with known results.  These observations are 

used to calculate new parameters that maximize the probability of the observations given the 

model, P(O|λ).   To do this, re-estimation of parameters for the model must increase P(O| λ ) 

where the re-estimated model parameters are defined as: 
 �/� � 0120��03 456�07 89 �:60; :4 ;���0 : �� �:60 � � 1 

 

�/� � 0120��03 456�07 89 �7�4;:�:84; 9786 ;���0 : �8 ;���0 <0120��03 456�07 89 �7�4;:�:84; 9786 ;���0 :  

 

�/ = � 0120��03 456�07 89 �:60; :4 ;���0 < 8�;07>:4? 8�;07>��:84 @=0120��03 456�07 89 �:60; :4 ;���0 <  

 

�A��B, C� �
0120��03 456�07 89 �:60; :4 ;���0 : 8�;07>:4? @= �� �:60 � �43 8�;07>:4? @D�� �:60 � ' 1 987 �EE �0120��03 456�07 89 �:60; :4 ;���0 : 8�;07>:4? @=  

 

First, define the variable γi(t) to be the probability of being in state i at time t for the sequence 

of observations O and the model λ.  That is: 
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F���� � G�H" � :|!, J� 
          � G�H" � :, !|J�G�!|J�  

        � G�H" � :, !|J�∑ G�H" � <, !|J�� �                                               �0K. 1� 
Earlier, the variable αi(t) was defined in the forward algorithm as  

αi(t) = P(O1,O2,…,Ot, Qt = i|λ) 

and βi(t) was defined in the backwards algorithm as 

βi(t) = P(Ot+1,Ot+2,…,OT|Qt = i,λ) 

Multiplying these together to get 

αi(t)· βi(t) = P(O1,O2,…,Ot, Qt = i|λ)· P(Ot+1,Ot+2,…,OT|Qt = i,λ) 

which is the same as P(Qt = i, O|λ).  Thus, we can calculate γi(t) from equation 1 as 

F���� � ����� · &����∑ � ��� · & ���� �  

Now, define the new variable ξij(t) to be the probability of being in state i at time t and state j at 

time t+1 given the observation sequence O and the model λ.  That is N� ��� � G�H" � :, H"# � <|!, J� 
The equation for ξij(t) can be re-written as 

N� ��� � G�H" � :, H"# � <, !|J�G�!|J�  

                                               � G�H" � :, H"# � <, !|J�∑ ∑ G�H" � :, H"# � <, !|J�� ����                            �0K. 2� 
 

From the forward algorithm, we know that at state Qt = i and left is equal to αi(t).  From the 

backwards algorithm, we know that at state Qt+1 = j and right is equal to βj(t).  We also know 

that the probability of going from state Qt = i to Qt+1 = j with our observations is equal to (the 

probability of transition from state i to state j) times (the probability of observing Ot+1 at state j) 

times (the probability of being in state i observing Ot and next observing Ot+1); i.e. P(Qt = i,Qt+1 

= j,O|λ) = αi(t)·aijbjkci(h,k)·βj(t).  Equation 2 can now be written as: 

N� ��� � ����� · �� � D���B, C� · & �� ' 1�∑ ∑ ����� · �� � D���B, C� · & �� ' 1�� ����  

Notice that if you sum γi(t) across all of t, ∑ F����O"� , you get the expected number of times in 

state i.  Also, if you sum ξij(t) across all of t, ∑ N� ���O."� , you get the expected transitions from 

state i to state j.  We can now write the equations for re-estimating the parameters of the model 

with the given observations to maximize P(O|λ). 
 �/� � 0120��03 456�07 89 �:60; :4 ;���0 : �� �:60 � � 1 �/� � F��1� 

 

�/� � 0120��03 456�07 89 �7�4;:�:84; 9786 ;���0 : �8 ;���0 <0120��03 456�07 89 �7�4;:�:84; 9786 ;���0 :  

�/� � ∑ N� ���O."�∑ F����O."�  

 

�/ = � 0120��03 456�07 89 �:60; :4 ;���0 < 8�;07>:4? 8�;07>��:84 @=0120��03 456�07 89 �:60; :4 ;���0 <  
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�/ D �
∑ F ���O "�P.".QR�ST∑ F ���O"�  

 

�A��B, C� �
0120��03 456�07 89 �:60; :4 ;���0 : 8�;07>:4? @= �� �:60 � �43 8�;07>:4? @D�� �:60 � ' 1 987 �EE �0120��03 456�07 89 �:60; :4 ;���0 : 8�;07>:4? @=  

 

�A��B, C� �
∑ F����O."�P.".QR�SU,QRVW�ST∑ F����O."�P.".QR�SU

 

If the current model is λ = (π, A, B, C) and the re-estimated model is JA � ��/, �A, 
/, �A� then 

either the model λ is close enough to JA that both models can be considered identical at the local 

critical point, i.e. J � JA, or G�!|JA� X G�!|J�, which is proven by Baum [10].  With the new 

model and the re-estimated parameters, continue to iterate through the observations with their 

known outcomes until J � JA.  At this point, you will be in a local critical point which we will 

consider the best parameter estimates within this local area. 
 

To prove that the re-estimated equations are correctly derived, we can mathematically optimize 

the parameters in the likelihood function, P(O|λ), so that it is maximized with the observations 

with known outputs.  This is accomplished using Expectation Maximization (EM) techniques, 

very similar to [13], which computed the re-estimated parameters of �/�, �/� , and �/ =.  Following 

the same methods, the Baum Auxiliary Function is defined as HYJ, JAZ � ∑ �G�H � K|! �[\\ ]8, J� · log G�H � K, ! � 8|JA��.  Since 

G�H � K|! � 8, J� � G�H � K, ! � K|J�G�! � 8|J�  

and 

 GYH � K, ! � 8aJAZ � �/]��∏ �/]�"�]�"#�O."� ∏ �/]�"�c�"�O"� ∏ �A]�"��8���, 8�� ' 1�O."� ) 
 

the log of this can separate out parts of the above equation: E8?GYH � K, ! � KaJAZ
�  E8?�/]�� ' d E8?�/]�"�]�"#�

O.

"�
'd�/]�"�c�"�

O

"�
'd �A]�"��8���, 8�� ' 1��O.

"�  

 

where q(t) and q(t+1) are the states at time t and t+1, and o(t) and o(t+1) are the observation at 

time t and t+1. 
 

Now the Baum Auxiliary Function can be re-written as 

HYJ, JAZ � d eG�H � K, ! � K|J�G�! � 8|J� f · �E8?�/]�� ' d E8?�/]�"�]�"W�
O.

"�
'd�/]�"�c�"�

O

"�[\\ ]
'd �A]�"��8���, 8�� ' 0�O.

"� � 
Or simply 

 HYJ, JAZ � Hh�J, �/� ' H[�J, �/� ' HiYJ, �/Z ' Hj�J, �A� 
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where 

Hh�J, �/� � dG�H � K, ! � 8|J�G�! � 8|J� E8?�/�
�

��
 

H[�J, �/� � dddG�K��� � :, ! � 8|J�G�! � 8|J� E8?�/� 
O.

"�

�

 �

�

��
 

HiYJ, �/Z � dd d G�K��� � <, ! � 8|J�G�! � 8|J� E8?�/ D
O

"�P" cR�kT

l

D�

�

 �
 

Hj�J, �A� � dd d d G�K��� � :, ! � 8|J�G�! � 8|J� E8?�A��8���, 8�� ' 1�            �0K. 3�O.
"�P" cR�SUcRVW�ST

l

D�

l

=�

�

��
 

 

with the following constraints 

d��
�

��
� 1 

d�� � 1�

 �
 

              d � D � 1l

D�
 987 �EE < 

d���B, C� � 1                                                             �0K. 4�l

D�
 

 

Lagrange multipliers can be used to solve for the estimated parameters of JA � Y�/, �/, �/, �AZ.  This 

has been solved of �/�, �/� , and �/ = in [13].  To solve for �A��B, C�  the same techniques used to 

solve for the other parameters are used here.  Let ρ be the Lagrange multiplier.  Solving for Hj�J, �A�, combine the constraint, equation 4, with the Lagrange multiplier and put with 

equation 3, differentiated and set to 0 for a solution; which is then put into the equations for the 

final solution of �A��B, C�: 
 

oo�A��B, C�
pq
qq
qrdd d d sG�K��� � :, ! � 8|J�G�! � 8|J� E8?�A��B, C�t

O
"�,P" QR�SUQRVW�ST

l

D�

l

=�

�

��
' uvd���B, C� w 1l

D�
x
yz
zz
z{

� 0 
 

d G�K��� � :, ! � 8|J�G�! � 8|J�
O

"�,P" QR�SU,QRVW�ST

· 1�A��B, C� ' u � 0 987 �EE :, B, C 
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�A��B, C� � w
∑ G�K��� � :, ! � 8|J�G�! � 8|J�O "�,P" QR�SU,QRVW�ST u  

 

Sub this into the constraint equation 4 to get 

u � wd d G�K��� � :, ! � 8|J�G�! � 8|J�
O

"�,P" QR�SUQRVW�ST

l

D�
 

 

The right part of this equation can be reduced by combining the summation together to get 

u � w d G�K��� � :, ! � 8|J�G�! � 8|J�
O

"�,P" QR�SU
 

Finally, �A��B, C� can be written as 

�A��B, C� �
∑ G�K��� � :, ! � 8|J�O "�,P" QR�SUQRVW�ST∑ G�K��� � :, ! � 8|J�O "�,P" QR�SU

 

 

which is the same as 

�A��B, C� �
∑ F����O "�,P" QR�SUQRVW�ST∑ F����O "�,P" QR�SU

  
 

4. EXAMPLE 1: FISHER IRIS DATA OF EXAMPLE OF MESSY DATA 
 

4.1 Introduction to the Problem 
 

This chapter will discuss the application of the theory of Evidence Feed Forward HMMs to 

classify.  A great amount of thought on what type of data should be used to focus on the 

difference in Evidence Feed Forward HMMs and standard HMMs.  It has always been a 

problem with standard HMMs that errors in data give poor classification results.  The data 

provided here will be over-processed to a point where standard techniques to classify this data 

cannot be accomplished algorithmically or through human inspection.  Although there may be 

viewable patterns in the HMM input data, there will also be errors. 
 

At this point, the reader should come to the conclusion that Evidence Feed Forward HMMs 

should be pretty good at identifying visual data from people.  This is because with Evidence 

Feed Forward HMMs, the link between observation to observation gives insight into patterns of 

movement.  For example, if a baseball player is pitching a ball, the pitching arm is moving in 

generally the same direction for most of the action.  The linkage from observation to 

observation will identify continual motion better than standard HMMs, thus more probability 
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will be associated with the trained data of pitching to increase probability in the motion of the 

pitching arm.  This will increase likelihood which will provide better results. 
 

However, video and image data of people are not the only category which will benefit from 

Evidence Feed Forward HMMs.  From the simple weather example presented earlier, it should 

be clear that the linkage of observation to observation will provide a means of increasing 

probability associated with the observations outside of the hidden states. 
 

The over-processed Fisher Iris data example will demonstrate the increased classification 

ability of Evidence Feed Forward HMMs in non-video/image data.  Although this may look 

like a stretch with relation of different data sets, it will be shown that there is some linkage and 

that Evidence Feed Forward HMMs provide a better means of classifying the over-processed 

data.  
 

The Fisher Iris Data [11] is a classical data set used throughout the image processing and 

pattern recognition communities as example data and test data for classification of algorithms.  

R.A. Fisher used this data in 1936 for pattern recognition.  It was originally gathered from an 

American botanist, Edgar Anderson in 1935. The data consists of a collection of sepal width, 

sepal length, petal width, and petal length of three types of Iris flowers, the Setosa, the 

Versicolour, and the Virginica.  150 data sets are provided with 50 of each Iris type.  One class 

is linearly separable from the others. 
 

Using this data will help show that the Evidence Feed Forward HMM works better than 

standard HMMs on more than just image and video data classifications.  For this data sets, the 

information will be over-processed to a point of non recognition visually through the human 

eyes.  That is, there will be no recognizing features when viewing this data visually.  The reason 

for over-processing the data is two-fold.  First, HMMs have inherently been bad at 

classification with messy data.  The over-processing of the data will make messy data.  Second, 

this data will show a better example of the increased capabilities of the Evidence Feed Forward 

HMM when compared with a standard HMM on the same data.  

 

4.2 Pre-processing of the Data 
 

The Fisher Iris data was imported from the University of California – Irvine Machine Learning 

Repository [11] which contains the original data with two fixes as described at the website.  

These fixes were errors in the data when originally used.  A plot of the petal length versus the 

petal width shows the Setosa class linearly separable from the other two classes, shown in 

Figure 3. 
 

After importing the data, each category was identified with the highest and lowest values.  

These values made up the end points for the class category.  For example, the petal length 

ranges from 1.0 cm to 6.9 cm, so the highest value is 6.9 and the lowest value is 1.0.  The value 

range decided the values associated with each bin.  A bin, in this case, is a value associated with 

a range of values from the data.  Ten bins were used.  For example, Petal Length has a range of 

5.9 cm (6.9 cm – 1.0 cm), thus each bin is split 0.59 cm wide.  Bin 1 holds the values from 1.0 

to 1.59.  Bin 2 holds the values of greater than 1.59 to 2.18, and so on.  The same holds true for 

all four categories. 
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Figure 3:  Fisher Iris data plot of petal length versus petal width. 

 

After the bins were created, the new data was processed to find the trends from sepal length to 

sepal width, sepal width to petal length, and petal length to petal width.  That is, increase, 

decrease, or no change in bin values for each flower.  So, if sepal length had a higher bin value 

then sepal width then this would be viewed as a decrease.  If it was a lower bin value then it 

would be an increase.  If the bin values were the same, then no change is recorded.  This was 

done three times (sepal length to sepal width, sepal width to petal length, and petal length to 

petal width).  This is the inputs into the HMMs for comparison. 

 

4.3 Results and Analysis 
 

The data used for both training and testing of the Evidence Feed Forward HMM and the 

standard HMM is described above.  Both the Evidence Feed Forward HMM and the standard 

HMM models were set up to have three hidden nodes and three outputs.  More nodes were 

trained and tested with little to no changes in the results.  MatLAB was used to program both 

the Evidence Feed Forward HMM and the standard HMM.  Each HMM was trained with ten 

data items per flower grouping creating three separate HMMs, one for each Iris type.  Training 

was considered complete when a change in likelihood value of 0.01 or less was attained.  This 

was assumed a good value after several runs through the training and testing.  Values that were 

less than 0.01 took several more iterations to converge.  Values higher than 0.01 threshold 

converged quickly with worse results when testing the data.  From the remaining 120 pieces of 

data both the standard HMM and the Evidence Feed Forward HMM was tested by running the 

data through each of the three HMMs.  The highest likelihood was the winner. 
 

The results showed that for the standard HMM, the likelihood of correctly identifying the Iris 

category is 35%.  This number is very low and can normally be considered a guess since it is 

about one third correct classification on three possible categories.  However, after looking at the 

results one can see that it correctly categorized almost all the Setosa Iris data but almost none of 

the other two Iris types.  The Setosa Iris is nearly linearly separable in sepal length verse sepal 

width and in petal length versus petal width.  This gives a clue into why the Setosa category 

was almost completly categorized correctly. 
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The Evidence Feed Forward HMM did much better in categorizing the over-processed Iris data.  

It correctly categorized 75% correctly.  This is probably because of the linkage between the 

observations (evidence).  Observations are the increase, decrease, or no change to the bins from 

sepal length to sepal width, sepal width to petal length, and petal length to petal width.  There 

seems to be more of a pattern when a bin value stays the same, increase, or decrease from one 

bin to another.  The bin changes are captured better by the Evidence Feed Forwards HMM than 

the standard HMM due to the observation to observation transition probability, as shown in the 

results. 
 

Although these classification rates are still poor when compared to other classifiers, one has to 

remember the type of data that these are trained and tested on as well as comparing the 

classifiers within their own category.  This data has been over processed and thus, very messy.  

There are no visual recognizable patterns that stand out in this pre-processed data.  
 

HMMs are notorious for being poor classifiers with messy data.  This is shown with the 

standard HMM on this data, only correctly classifying 35% correctly.  However, the Evidence 

Feed Forward HMM has given much better results, classifying 75% correctly.  This better 

classification rate than standard HMMs is due to the linkage in Evidence Feed Forward 

Observations which is not present in standard HMMs. 

 

5. EXAMPLE 2: VIDEO ACTION RECOGNITION WITH SPARSE MESSY DATA 
 

5.1 Introduction to the Problem 
 

The video action recognition data used is from a popular source which created this data to be 

used to improve people’s action classification algorithms on visual data.  The database comes 

from Carnegie Melon University (CMU) Graphics Lab and can be found at [12].  For this 

example, the simulated data on jumping, running (jogging), dribbling a basketball, and soccer 

kick was used.  Like the Fisher Iris data, this data was over processed to better show the reader 

the ability to classify with sparse messy data; sparse data because in some cases there where 

only a handful of action sequences to test and train on.   
 

The CMU data was captured as a sequence of simulated people singled out to perform an 

activity.  Each simulated action is performed different between the groups.  The starting and 

stopping frames are different as is the way the activity is performed.  For example, comparing 

two running sequences, one may take a longer stride than the other or arm movements may 

have different frequencies. 
 

This data was processed so that the hands, arms, and head can be tracked.  It was over 

processed to a point where one could say it is unusable.  This was to show the strength of 

Evidence Feed Forward HMMs compared to other HMMs.  The hands, feet and head location 

were often misclassified which produced large, abnormal movements with hands, head, and/or 

feet.   

 

5.2 Pre-processing the Data 
 

This data was easier to process then real data since there is no background information that 

needed to be segmented out or tracking of colors.  Like many image processing exercises, the 

more processing that is done to an image, the more likely that the image is no longer a good 
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representative of the items you are trying to find.  In this case, we are trying to find links 

between frames to represent actions.   
 

The determination of the edges of the body was by threshold analysis.  If the grayscale image of 

the body was below a threshold, then it was considered not to be part of the body.  As images 

are taken, there is usually a mixing of colors from the edges of the body to the background.  

This mixture is removed using thresholding.  If thresholding was not used then the edges of the 

image would be very rough and virtual impossible to perform some of our data processing 

techniques to it.  The thresholding produced a binary image. 
 

Next the binary image of each frame was skeletonized.  That is, the area representing the image 

was thinned to a point where only a single line represented the body parts.  This made it easier 

to identify the tips of the hands, feet, and head through the endpoints of skeletal image frame.  

If a point in the image frame had only one neighbor, then it was considered an endpoint.  Often 

times, the skeletonization process thins the image to much where several end points other than 

the tips of the hands, feet, and head are found.  This creates extra points in the image. 
 

To reduce the number of extra points, another process is performed to find the location of the 

last points and keep all points that are within a certain distance from them.  This distance must 

be greater than the pre-determined distance otherwise it is considered part of the point.  This 

alleviates some of the problems with multiple points, but not all of them.  So, only the five 

points which best represent the last five points are kept.   
 

Looping of an endpoint occurs from the thresholding process, which the skeletonization process 

exploits.  When a loop occurs, there is no endpoint since all points in the looped area have more 

than one neighbor.  This eliminates key endpoints.  To add the end points back in, a close 

representative of the point is used.  It keeps the location of the last point which was missing and 

assumes the change is negligible.  As one can imagine, this may cause some problems with the 

classification since changes are important with Evidence Feed Forward HMMs.  When 

automating the pre-processing phase of the image sequences, this problem occurs often, so no 

measures are made to manually reduce it.  The idea is to have some uniformity in the pre-

processing as well as the classification. 
 

The worst of these errors happen when a point is missing in one frame and then shows up as 

extra points in the others.  Often times the skeletonization process produces lines where none 

should exist and creates loops where there should exist a single line, all in the same image 

frame.  In this case, it may have found the five points it was looking for, but not the correct 

ones. This error is propagated into the classification algorithm as well as in the pre-processing 

procedure since it uses the previous frame as a template to where the points should be.   
 

Without all the image processing errors, this would be a viable way to find activities of the 

people.  The hands, feet, and head location would probably be tracked and with enough data, 

the classification algorithm would utilize all the position information.  However, at this point it 

should be noted that first, this is not an image processing research project.  The errors in the 

pre-processing are common and with a greater amount of time many may be alleviated.  

However, to demonstrate the robustness due to errors in Evidence Feed Forward HMMs versus 

standard HMMs, these types of errors will not be removed. 
 

To continue along with the pre-processing of this data, the five points are feed into another 

processing step which is meant to find and track the changes in the position of the points in 

relation to each other.  The five points will make up a bounding box which all five points are 
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either on the edge of the box or inside.  Bounding boxes are often used in pedestrian detection 

to encompass the entire pedestrian within the box.  This process is similar except that it only 

encompasses the hands, feet, and head.  If you can imagine a person standing sideways with 

hands out, the box would be thinner than if a person is standing facing forward with hands to 

their sides and feet spread apart.  These differences are what we are looking for. 
 

The height/width ratio is found by taking the height and dividing by the width.  This method is 

sometimes used as a simple way of determining body position from crouching to standing, 

however in this case, only hands, feet, and head are used to create the bounding box where 

usually the entire body is used to create the bounding box. 
 

The height/width ratio for each frame in the sequence of images is put into one of eleven groups 

based on the value of the ratio.  Group 1 is if the ratio is below 0.1, group 2 is for the ratio to be 

between 0.1 and 0.2, and so on to group 11 which is above 1.0.  It is assumed that the hands, 

feet, and head would be changing throughout the activity and these changes can be tracked to 

produce a similar activity representation per individual.  In reality, this simplifies the activity 

and would be true if this was applied to a single person’s way of performing the activity.  

However, everyone has a relatively unique body position at each stage of the activity.  This 

over simplification of the activity is part of the over-processing which is often a problem with 

many classifiers.  
 

The final step of pre-processing is to track and record these changes in groups from frame to 

frame.  If a frame changes to a higher group then the previous frame then it is considered an 

INCREASE, if it is lower than it is a DECREASE.  If there is no change in grouping then it is 

considered NO CHANGE.  This creates a way of tracking the changes from frame to frame for 

input into the HMMs.  However, this process does not track the magnitude of the change which 

might also be important.  The idea is to keep the data simple and  represent the output in our 

HMMs.  If the observation data was more complicated, i.e. more values associated with it, then 

the training data would need to be increased to cover all the possible options of the observation 

data.   
 

The pre-processed data represents the evidence, or observations, for our HMMs.  The evidence 

is the input into the HMMs for both training and testing.  The number of frames per activity 

varies greatly, anywhere from 20 to 120 frames per activity. it was decided that the likelihood 

of each testing activity would be compared and the greatest likelihood would be the class it 

represented. 

 

5.3 Results and Analysis 
 

Of the four classes, there are a total of 64 activities modeled by the simulated sequences.  17 of 

these activities are jumping, 28 are jogging/running, 7 are soccer kicking, and 12 are dribbling a 

basketball.  The dribbling a basket ball had 9 from the right hand and 3 from the left.  From 

each group, except for soccer kicking, four 

random activities were used as training the Evidence Feed Forward HMM and the standard 

HMM.  Three were taken for soccer kicking because the sample was very small.  These training 

activities were the same for training both HMMs.  The training and testing of the Evidence 

Feed Forward HMM and the standard HMM were programmed in MatLAB. 
 

A total of 3 nodes were used in the hidden layer.  More were tried, but did not increase the 

classification rate.  With less nodes, the classification rates were worse, so three nodes were 
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optimal on our testing/training samples.  Also, from earlier, three input values are used as the 

evidence which roughly represented the change in body position from frame to frame 

(INCREASE, DECREASE, and NO CHANGE).  The training was considered complete when 

the threshold changes of the previous HMM log-likelihood and the new HMM log-likelihood 

with updated parameters were less than 0.25.  Many different thresholds where tried with 0.25 

being the optimal one.  With a lower threshold, the training took a long time to converge on a 

solution for many of the activities.  This usually means over-training and as a result the testing 

data was classified correctly at a worse rate than with a threshold of 0.25.  When increasing the 

threshold above 0.25, the training converged very quickly and the results were also not as good 

when the testing data was applied.  This is indicative of under training. A threshold change 

value of 0.25 was considered optimal. 
 

For the standard Hidden Markov Model, it correctly classified 67% of the jump activity, 21% of 

the jogging activity, 50% of the soccer kick activity, and 12.5% of the dribbling activity.  See 

Table 1 below.  The Evidence Feed Forward HMM correctly identified 78% of the jump 

activity, 46% of the jogging activity, 100% of the soccer kick activity, and 50% of the dribbling 

activity. 
 

Notice that in all cases, the Evidence Feed Forward HMM did better than the standard HMM on 

this data.  This is because, even though the data is sparse and it was over processed, the 

Evidence Feed Forward HMM was still able to pick up some of the patterns that recognized the 

activity due to its ability to increase predictions based on previous observations.  That is, the 

observation to observation link in the Evidence Feed Forward HMM provides the ability to 

increase the overall probability of an activity’s pattern, and thus increase the classification rate.   
 

 

Table 1. 

Classification rates of HMM and Evidence Feed Forward HMM. 

Activity HMM EFF-HMM 

Jump 67 78 

Jogging 21 46 

Soccer kick 50 100 

Dribbling a basketball 12.5 50 

 

To further improve on the analysis one must first look at how the data is perceived to the 

classifier.  For the jumping data, one can imagine the ratio starting small, getting bigger as the 

person crouches to jump, then getting small again when the person stretch through the jump.  

The patterns of the groupings should be decreasing for a while then increasing.  For running, 

the arms stretch out around the time the legs stretch out and they come together as the legs 

come together.  Therefore, one would expect, depending on the starting phase of the sequence 

simulating running, the bounding box ratio would be small (arms and legs together) then 

increasing until a certain point (when the arms and legs are at their peak) then decreasing.  This 

is similar to the jumping and it is noted  that many of the misclassified activities of jogging 

were classified as jumping.   
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For the dribbling a basketball activity, one would expect that the bounding boxes would be 

pretty much the same throughout.  As the person walks, the dribbling hand continues up and 

down at the same position but with further analysis, it shows that some of the simulations move 

their opposite arm similar to walking which makes the bounding box increase and decrease, 

thus the changes in the bounding box ratio will also increase and decrease in a similar fashion 

to jogging and jumping. 
 

Soccer kicking was a bit different than the rest of the activities.  As the player lines up towards 

the ball the legs come together.  Further into the sequence the right arm extends out as the 

kicking process is started.  Next the leg extends out.  Most of the bounding box ratio from 

frame to frame is increasing.  This is easy for the soccer kicking to classify correctly.  However, 

some of the Jogging activity also was classified as soccer kicking.  This is because the way the 

running simulation in these four people had a large amount of increasing which better 

associated with soccer kicking then with running. 
 

These results not only shows why some of the activities were misclassified, but also shows the 

problem with over-processed data.  Since there are no real distinguishing features that are 

indicative to the activity, many of the activities were classified with similar events as far as 

their data representation is concerned. 
 

The Evidence Feed Forward HMM did much better than the standard HMM in this sparse, 

over-processed data.  This is due to the linkage of observations to observations.  Even though 

there were no visible patterns associated with the activity, the Evidence Feed Forward HMM 

showed that fairly good classification could still be accomplished when compared to standard 

HMM classification. 

 

6. CONCLUSION 
 

The Evidence Feed Forward Hidden Markov Model is more than a standard Hidden Markov 

Model.  It provides observation to observation linkage in the algorithm.  The linkages were 

developed through analysis and proven mathematically.  It was originally designed for better 

classification of visual action data, like the differences in pitching and throwing from the 

outfield.  The idea is that if there existed a way to link one observation frame to another, then 

there may be some patterns that the Evidence Feed Forward HMM could recognize better than 

if there were no observation linkages, like how a standard HMM would classify.  This was 

extended for more than just visual data and has shown to work in other classification areas. 

 

The proposed research on the development of the Evidence Feed Forward HMM has worked 

well for classifications of items based on the observation to observation link that is not 

available in other types of HMMs.  With messy data, it has outperformed the standard HMM in 

classification of the Iris data.  With sparse messy data it has outperformed classification on 

visual activities created by simulated actions from the CMU data set.  This dataset was over-

processed to a point where no visual cues were seen.   

 

The mathematical proofs, results, and analysis of the Evidence Feed Forward HMM has added 

a new type of classifier and a new way of thinking about how the data should be viewed.  

Observation to observation linkages are essential, especially for visual data, if a more complete 

classification system is to be developed.   
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